U.S. Department of Energy

Nuclear Energy University Programs

NEAMS Reactor IPSC: Nuclear Reactor Performance and Safety Analysis

Dr. Thomas Fanning
Argonne National Laboratory

August 10, 2011

Overview

- Relationship between NEET and NEAMS
- Overview of NEAMS
- Reactor Integrated Performance and Safety Codes
 - Nuclear Reactor Performance and Safety Analysis
- FY12 Reactor IPSC Scope
- FY12 NEUP Scope to Address Research Needs
- Expectations and Deliverables

Funding and Programmatic Overview

- Nuclear Energy Enabling Technologies (NEET)
 - Crosscutting Technologies
 - Modeling and Simulation
- Nuclear Energy Advanced Modeling and Simulation (NEAMS)
 - Integrated Performance and Safety Codes (IPSC)
 - Reactor IPSC
 - Supporting Elements
- In FY 2012 NEAMS will be supported by NEET

Purpose of NEAMS

Produce and deliver computational tools to designers and analysts that *predict behavior* in relevant operating regimes, particularly beyond the test base.

IPSCs

NEAMS Program Elements

Integrated Performance and Safety Codes

- •Continuum level codes that will predict the performance and safety of nuclear energy systems technologies
- Attributes include 3D, science based physics, high resolution, integrated systems
- ■Long-term development horizon (~10 years)
- Codes with verification, validation and error uncertainty quantification
- Using interoperability frameworks and modern software development techniques and tools

Crosscutting Methods and Tools

- Develop crosscutting (i.e. more than one IPSC) required capabilities
- Provide a single NEAMS point of contact for crosscutting requirements (e.g. experimental data, computer technologies)
- Smaller, more diverse teams to include laboratories, universities and industries.
- "Tool Development" with shorter timelines

Advanced Nuclear Fuels
Reactors
Jsed Fuel Disposition

Fundamental Methods and Models

Verification, Validation & Uncertainty Quantification

Capability Transfer

Enabling Computational Technologies

Reactor IPSC Goals and Strategy

- Apply modern, high-performance computing techniques to nuclear reactor modeling
 - Use advanced simulation tools to improve safety, reduce cost, explore advanced designs
 - Provide local data needed to enable predictive fuel performance simulations
 - Understand and reduce uncertainty of computational models

Strategy

- Focus funding on reactor agnostic components to remain responsive to customer needs
- Adopt multi-scale strategy to enable application to problems relevant to industry using a wide range of platforms
- Utilize modular architecture to enable component-wise use by most advanced users or integrated user interface driven application by less advanced users.
- Develop collaborations with customers to define near term applications/demonstrations

Customers

- Advanced Reactor Concepts
- Next Generation Nuclear Plant
- Light Water Reactor Sustainability
- Small Modular Reactors

Neutronics (Proteus)

- MC²-3 module
 - Provides high resolution cross-section libraries for fast spectrum applications
- UNIC transport solver modules
 - MOC-FE provides 3-D & 2-D MOC
 - targeting problems with minimal homogenization
 - SN2ND provides 1st and 2nd Order Discrete Ordinates
 - demonstrated from desktop to petascale platforms
 - prefer to homogenize pin cells
 - PN2ND provide 1st and 2nd Order Spherical Harmonics
 - prefer to homogenize assembly internals
 - NODAL provides a diffusion theory based structured geometry solver
 - fast running, highly scalable full core simulator
- MOCARV simulation module
 - Integrates 2-D MOC representations of radial planes with Sn Transport in axial direction
- Simulation modules to support reactor kinetic and fuel cycle analysis using the UNIC transport solver modules are in preliminary stages of development

Neutronics Validation

- **ZPR6 Assembly 6A**
 - Well-documented critical experiment
- **Recent Developments:**
 - $2 \times 10^6 \rightarrow +50 \times 10^6$
 - 20 M vertices, 100 angles, 33 groups, ~45 min on full Cray XT5 (~130B DOF)

Exact Geometry

ZPR6-7 Foil Measurements

- 230 group L5T5 with P3 scattering kernel were performed using SN2ND
- Existing VARIANT code could not obtain a similar solution
- Results shown are for fission in the EU foils and capture in the DU foils for the two BeO modified loadings
- Results for loadings 104 and 120 using foil cross sections from MC²-3 were equivalent in accuracy to that using MCNP based foil cross sections
- Additional Studies are ongoing on how to improve MC²-3 performance and accuracy

Thermal Hydraulics

Nek5000 DNS/LES module

- Highly-scalable, high-order spectral element CFD
- Direct Numerical Simulation
 - solves for stress tensor directly
 - limited to small regions because very high resolution mesh is needed
- Large Eddy Simulation
 - uses spectral filtering or sub-grid model for smallest turbulence length scales
 - applicable to component analysis

Nek5000 URANS module

- Solves Unsteady Reynolds Averaged Navier Stokes equation using two to six equation closure models to approximate turbulent stresses
- Applicable to large regions

STAR-CCM+

- Provides access to steady and unsteady RANS solvers of STAR-CCM+
- Applicable to large regions, up to full core
- Provides access to STAR-CCM+ steady state eulerian-eulerian multiphase solver

SHARP-IF module

- Intermediate fidelity simulation toolset using momentum sources to mimic effects of geometric details
- Applicable to full core +

SAS11 modules

- Lumped parameter representation of T/H and Structural Mechanics applicable to full system
- Provides continued access to existing SFR fuel performance models

Thermal Hydraulics Findings

 Flow field evolves significantly from 7 to 217 pin assemblies

- Reduced importance of bulk swirling and increased complexity of flow field with increasing pin count
- Fundamental change in flow behavior between 19- and 37-pin assemblies
 - Important because most experiments have been completed using 19 pins
 - Explains observations in small number of experimental pressure drop data sets for large bundles

U.S. Department of Energy

Framework and Meshing

MOAB module

- Highly scalable data management for mesh based simulations
- Currently integrated into UNIC, Nek5000, Star-CCM+ and DIABLO

MB Coupler module

Scalable parallel solution transfer between meshes of different types

MeshKit Modules

- MeshKit Generation Library
 - Provides consistent API access mesh generation functionalities in MeshKit or other libraries
 - Includes RGG reactor geometry/meshing tool
- CGM Geometry Library
 - Library for CAD and other geometry types
 - Includes interface to Open.CASCADE, an open-source library for geometry
 - compatible with (and can import models from) CUBIT's CGM
- Lasso relations library
 - Allows associate of mesh to geometry without requiring software dependency between mesh and geometry libraries

Meshing

 MeshKit's RGG (Reactor Geometry Generator) has two components:

 AssyGen: Assembly geometry and meshes based on text input. Supports rectangular and hexagonal assemblies

 Coregen: Core geometry and meshes by copy, move and merge operations.

Meshing

- 1/6th of a VHTR core (12M hexes)
 - Assembly geometry: 4 min
 - Assembly meshing: 4 min
 - Copy/move/merge assemblies to form the reactor core: 23 min

Neutronics

- Finalize QA work on intermediate-fidelity neutronics
- Wrap up remaining work on MC²-3
- Update MOCFE to handle non-conformal spatial meshes
- Support data structures for conventional sub-group cross-section treatment for thermal reactors.
- Update MOCARV (reduced vector space solution algorithm with parallel solve) and perform verification
- Prepare documentation for SN2ND
- Develop additional verification benchmarks

Thermal Hydraulics

- Continue QA work for Nek5000
- Prepare validation benchmark simulation for 2012 OECD/NEA MATIS benchmark
- Continue developments and validation for Nek5000based uRANS solver
- Extend IF treatment to whole-assembly models
- Assess whole-assembly flow and temperature distributions for transient conditions.
- Develop dynamic multiscale averaging techniques for turbulence simulations.

Framework and Meshing

- Continue integration of UNIC, Nek, and Diablo into SHARP framework.
- Improve performance and flexibility of solution transfer.
- Implement surface field coupling
- Implement boundary-layer tool for inserting postmeshing boundary conditions
- Establish MeshKit/MOAB/CGM user workshop and documentation

- Systems and Safety
 - Review potential compatibility between R7 and SHARP
 - Formulate case studies for cross-fidelity comparisons between reduced- and high-fidelity simulations
 - Define algorithmic requirements for reduced-fidelity model caliabration
 - Update code documentation for SAS11
 - Establish automated verification and regression testing

- Structural and Fuel Mechanics
 - Complete Diablo connection to the MOAB API
 - Demonstrate thermal-mechanical coupling
 - Establish representative assembly geometry with operational power and flow history for fuel mechanics simulations
 - Perform simulations using AMP to predict assembly distortion due to power/flow history.
- Uncertainty Quantification (\$200k)
 - Perform uncertainty analysis for Nek-5000 2D validation examples
 - Continue developments of automatic differentiation techniques applied to SAS11

Challenges

- Multi-Resolution Scaling and Multi-Physics Coupling
- Thermal-Hydraulics
- Safety Analyses
- Meshing
- Visualization

Reactor IPSC Research Needs

- Multi-Resolution Scaling and Multi-Physics Coupling
 - Upscaling methods that enable reduced order modeling of long term transients and fuel cycle performance.
 - Multi-scale integration methods to enable development of virtual reactor simulations using multiple levels of resolution to represent a single physics.
 - Modular structural codes to understand all aspects of pressure boundary integrity (piping, vessels, steam generators, nozzles etc.).

Reactor IPSC Research Needs

Thermal-Hydraulics

- Methods to perform sensitivity studies to evaluate variability and/or flow dominance regimes during the initiating phases of natural convection cooling.
- Predictive methods for simulation of two-phase boiling and/or flashing flows in complex geometry.
- Water coolant chemistry models to support simulation of steam generating fouling and in-core applications.
- Development of a coolant properties code library that contains highly-detailed correlations and uncertainty quantification data on coolant properties in liquid, vapor, and supercritical phases (e.g. provide a reference for benchmark and validation purposes).

Reactor IPSC Research Needs

Safety Analyses

- Multi-scale integration methods to enable development of virtual reactor simulations using multiple levels of resolution to represent different physics (e.g., neutronics, fluid dynamics, heat transfer, etc.)
- Methods to perform probabilistic safety assessment of component or system performance weighted over a broad spectrum of anticipated component or inherent feature failure conditions.
- Development of a coolant properties code library that contains highly-detailed correlations and uncertainty quantification data on coolant properties in liquid, vapor, and supercritical phases (e.g. provide a reference for benchmark and validation purposes).

Meshing

 Efficient, scalable, high-fidelity mesh generation methods to provide accurate descriptions of realistic nuclear reactor component geometries

Visualization

 Expanded visualization techniques to assess system-wide coupling impacts

Expectations and Deliverables

- Mission-driven expectations
 - 20% relevance
 - 80% technical
- Deliverables clearly tied to Reactor IPSC needs and identified in proposals
 - Specific
 - Measurable
 - Achievable
 - Realistic
 - Time-bound
- Performance feedback